Disappearing Infusion Therapy Teams: Justified or Not?

Lynn Hadaway, M.Ed., RN, BC, CRNI
Disclosure

• Lynn Hadaway is a paid consultant for Bard Medical.

• This presentation is created and presented through financial support from Bard Medical.
Shifting Responsibility

1940
First IV nurse, by MD in some states

1961-62
Reversal of some U.S. laws

1970’s and 80’s
Development of IV teams

1990
Excessive workload for interns, residents

2000’s
Cost containment & disbanding of teams
Desired Goal of Infusion Therapy

- Reaching end of prescribed therapy over days, weeks, months, or years
- With minimal risk to patient and caregivers
- Using correct amount and type of supplies, equipment, resources
- By the most appropriate personnel
Learning Objectives

• Define the concepts of infusion therapy teams and an infusion alliance.
• Explore the published evidence for infusion therapy teams.
• Examine the reasons for the current trend of disbanding infusion therapy teams.
• Investigate the current trends in healthcare that are supportive of the team concept.
• Identify the components of the business plan needed to justify an infusion therapy team.
Infusion Therapy

- Accessing the vascular system is the most invasive procedure performed by nurses at all practice levels.
- Complexity has never been greater:
 - Intra-arterial
 - Intraosseous
 - Intraspinal
 - Subcutaneous
 - Hundreds of medications and fluids
- Infusion therapy is high-risk, high-volume, and problem prone.

330+ million peripheral catheters sold annually in the US35

7 million central venous catheters sold annually in the U.S.36
Infusion Nursing

• A recognized specialty
• Much more than technical tasks!
• Nursing -
 – ANA'S Definition of Nursing37
 • Nursing is the protection, promotion, and \textit{optimization of health and abilities, prevention of illness and injury}, alleviation of suffering through the diagnosis and treatment of \textit{human response}, and \textit{advocacy} in the care of individuals, families, communities, and populations.
What is an Infusion Therapy Team (ITT)?

- No single model works for all settings
- The Continuum of Team Services

![Diagram showing the Continuum of Team Services]

- PIV insertion only
- CVC care
- Complication management
- PICC insertion
- Chemo, nutrition, blood
- Vascular access services
- All insertions, all infusions, all VAD care
What is an ITT?

• Group of nursing staff working collaboratively with all members of an infusion alliance to deliver safe, timely, accurate infusion therapy to all patients.
 – Scope of services is defined based on the identified needs of each institution
 • 24 hours, 7 days a week, full service team
 • A single infusion nurse specialist as a resource
 – Organization may be
 • Centralized or decentralized
 • Stand-alone department, a nursing service, or pharmacy-based group, etc
ITT – Name & Scope

• PICC insertion service
 – Focus exclusively on technical task of PICC insertion
• Vascular access alone
 • Pre-insertion assessment for the right catheter
 • Insertion procedure
 • No involvement during dwell time
• Needed services but focus is usually on insertion procedure
 – Does not address infusion needs after insertion
 – Fate of catheter is directly related to care during dwell
• All functions can be done by the same team
Philosophical Infusion Alliance

- **Alliance**
 - Bond or connection between families, states, parties, or individuals
 - Association to increase common interests of members
- **Infusion Therapy Team** can not operate in isolation
Committees are formal methods to communicate and make decisions among members of alliance

- Pharmacy and Therapeutics
- Infection Control/Prevention
- Value Analysis
- Standards
- Policies and Procedure

Infusion therapy practices should be consistent in all areas of facility

Infusion nurses must serve on these committees
Communities of Practice

- Self-organizing, informal systems
- Exchange and interpret information, retain knowledge, keep organization on “cutting edge”
- Membership includes whoever participates in or contributes to the practice
- Defined by knowledge, not the task
- Participation has great value to members
- Membership produces shared practices due to the collective process of learning
Evidence for ITT

Before 1983 – Peripheral IV starts produced revenue

Now – No revenue for Peripheral IV starts
Evidence for ITT

- Prospective trials of catheter-related complications
- Consistent reduction in phlebitis, suppurative phlebitis, bacteremia with ITT ²,⁴
- Reduced number of venipunctures, increased patient comfort with ITT ⁵
- Cost savings documented with ITT ³,⁶
Evidence for ITT

- 1996 - 3-fold reduction in bacteremia with IV team\(^7\)

Pre-IV team
- 45 IV-related bacteremias in 9782 patients (4.6/1000 patient discharges)

With IV team
- 16 IV-related bacteremias in 10,841 patients (1.5/1000 patient discharges)

- No IV team service to critical care areas and no change in rates
Evidence for ITT

• Reduced rates of bloodstream infections
 – Before and after IV team data
 • Primary BSI dropped by 35%, Primary BSI from Staph aureus dropped by 51% in 34 month period
 • Assuming 27% attributable mortality rate, 14 lives saved by IV team
 – Randomized controlled trial
 • Physician house staff VS IV team nurses
 – IV 1st attempt success rate 81% by IV nurses, not reported by house staff
 – 3 episodes of CRBSI from house staff-inserted PIV, none by IV team nurses
 – Overall complication rate
 » 21.7% in house staff catheters
 » 7.9% in IV team catheters
Evidence for ITT

• Venipuncture proficiency rates
 – # of attempts in pediatric patients by type of provider

<table>
<thead>
<tr>
<th>Provider</th>
<th># of attempts</th>
<th>Successful #</th>
<th>Unsuccessful #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians</td>
<td>416</td>
<td>95 (23%)</td>
<td>321 (77%)</td>
</tr>
<tr>
<td>Staff RN</td>
<td>197</td>
<td>86 (44%)</td>
<td>111 (56%)</td>
</tr>
<tr>
<td>IV nurse</td>
<td>43</td>
<td>42 (98%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>
Evidence for ITT

- Randomized sampling of infusion team database during 12 month period12
 - 7-day per week service of consultations for difficult venous access and complication management
 - 10,842 total consults in database
 - 789 analyzed, 250 randomly selected
 - 64\% patients with multiple consults
 - Majority from noncritical medical and surgical units
 - 57\% of patient’s veins recorded as “visible & poor” or “nonvisible, nonpalpable”
 - 15\% with restrictions such as AV fistulas, arm trauma/surgery
 - Identifies educational and performance improvement needs by unit
Evidence for ITT

• Reported use of PDA for infusion services13,14
 – Gather data on team services
 – Document units, types of calls, patient interventions and responses, patient outcomes
 – Identified educational needs on specific units
 • Objective performance improvement data
 – Facilitates objective decision-making
Evidence for ITT

- Quality improvement project using published evidence to create a venous access team15
 - Created specially trained team for PIV placement
 - Created venous access algorithm for catheter decision-making
 - IV nurses for educational support
 - Developed tracking mechanism to evaluate outcomes
Evidence for ITT

• Process for proposal creation, data collection to support team concept\(^{16}\)
 – Insertion attempts for PIV decreased from 6 per patient to maximum of 2, cost savings of $27 per patient
 – Phlebitis rates dropped by 2%
 – Fiscal responsibility important, but emphasized patient safety and satisfaction is central to team decision
Evidence for ITT

• PIV catheter insertion success study
 – 34 RN-volunteers collected self-reported data
 • 339 PIV insertions, 260 successful (77%)
 • Mean insertion difficulty 4, on 0-10 scale
 • Patient variables influencing success rates
 – Vein visibility and palpability
 – Skin being tough or dark
 – Vein rolling, resistant to puncture and threading
 • Nurse-related variables influencing success rates
 – More experience, older, higher self-rated skills
 – PIV insertion one of most technically difficult procedures performed by nurses
 – Researchers recommended IV therapy teams
Other Clinical Outcomes

- IV medication errors
 - 73,000 reported to USP over a 5 year period
 - 3-5% judged as harmful18
- Standardized approach to IV drug infusions
 - Many changes in policies and purchasing19
- IV medication errors with infusion pumps
 - 426 medications observed through "smart" pump
 - 285 (66.9%) with 1 or more errors; 389 total errors
 - 37 rate deviation errors, 3 of these due to programming error
 - Only 1 error prevented by pump technology
 - Pumps must be integrated with other information technology to produce meaningful safety improvements20
Other Clinical Outcomes

- Pooled mean of central line associated BSI rates 2006-08
 - 1.6 to 4.6 per 1000 catheter days21
- Peripheral catheter complications are under-evaluated22
So Why Are Teams Disappearing?

- Cost reduction
 - Labor costs
 - Shifting responsibility for tasks from specialty nurses to generalist nurses
 - Peripheral catheter insertion
 - Dressing changes
 - Supply costs
 - Removal of products perceived to be ‘unnecessary’
 - Most with good clinical evidence demonstrating improved outcomes
So Why Are Teams Disappearing?

• Work Redesign - the mantra of the 1990’s
 – Recommended by process engineers ignoring the human element
 – Doing the same or more work with fewer people
 – Increased stress, workforce dissatisfaction
 – Some infusion teams disbanded during this movement
So Why Are Teams Disappearing?

- Redesigning the work of infusion therapy today?
- Successful models of work redesign
 - Developed by front-line workers
 - Must consider
 - Needs of patients
 - Staff skills
 - Competencies
 - Characteristics of hospital23

\textit{Insanity: doing the same thing over and over again and expecting different results.}
So Why Are Teams Disappearing?

- Team reduction from 11 to 2 nurses in a 200-bed VA Medical Center over 7 months
 - Changing roles from care provider to education, consultation, quality improvement processes
 - Positive aspects reported
 - Expanded services to ICU, reduced CRBSI rates
 - Improved outcome data collection processes, documentation of IV procedures
 - Improved opportunities for nursing research
 - Increased use of midlines, plan for difficult peripheral insertions
 - Product introductions with savings for nursing time
 - Greater opportunities for staff development
 - Reduce costs
 - Negative aspects reported
 - No data collection of short peripheral catheters
 - Increased patient complaints due to increased number of venipuncture attempts
 - Decrease in compliance with published standards
 - Increased demand on IV team during transition
 - Demoralized IV team
Lessons for Infusion Team Success

• **Be prepared for challenges**
 – May come from anywhere
 • Nurse-consultants from hospitals without teams
 • Past experiences, beliefs, preferences
Lessons for Infusion Team Success

• **It is all about the DATA**
 – Outcome data, not just # of procedures
 • Reducing rates of infection, air emboli, blood incompatibility, infiltration/extravasation
 – Proficiency data
 • Reduces time and supply costs
 – “Highly specialized skills by fewer people means better outcomes”
Lessons for Infusion Team Success

• **Nursing staff dissatisfaction**
 – Staff nurses expected to become infusion experts
 – Expected increased pay and decreased patient assignments
 – Will contract renegotiation be required?
Lessons for Infusion Team Success

• Know the patient satisfaction measurement processes
 – What questions are asked
 • How would you rate the competence of the person starting your IV?
 • How would you rate the courtesy of the person starting your IV?
 – For which patients, what departments
 – What are the results
Lessons for Infusion Team Success

• Decisions made by people who do not understand infusion therapy processes
 – Learn to translate to improve comprehension, understanding
 – Learn to speak their “language”
 • Finance, budgeting, costs
 • Staffing
 • Reimbursement issues
 – Payer mix
Lessons for Infusion Team Success

• **Market the Infusion Team as Experts**
 – Standard colors for easy recognition
 – A logo for the team
 – Marketing message should reach
 • Patients and families
 • Internal clients - all nurses in all departments served, physicians
 • External clients - other agencies, hospitals within the same organization, physician offices
 – DO NOT hide or become secluded
Supporting Trends

- Patient Safety
- High Reliability Organizations
- Value-based Systems
- Changing Reimbursement Structures
- Growing emphasis on teams and teamwork
Patient Safety

- Freedom from accidental or preventable injuries produced by medical care
- Based on Systems Thinking
 - Safety depends on anticipating errors and preventing or catching them in the system before they lead to harm
- Regarded as a subset of Quality
- Culture of safety
 - A serious commitment to safety that permeates all levels of an organization
 - Primary care, frontline personnel to executive level to board of directors
Patient Safety

Infusion therapy injuries
- Infection
- Air, catheter, or thrombus emboli
- Infiltration/extravasation
- Medication errors
- Blood incompatibility

Outcomes of these injuries
- Delayed therapeutic response
- Complex regional pain syndrome
- Surgical scarring, loss or limitation of arm function
- Amputation
- Persistent vegetative state
- Death!!
Patient Safety

- **Swiss Cheese Model of organizational accidents**
 - Cannot perfect human behavior
 - Emphasis on shrinking the holes and creating multiple layers of protection
 - Errors are mostly unintentional
 - Management cannot control what the nurse did not intend to do
Patient Safety

- Principles derived from other groups operating under hazardous conditions with very few adverse events

- Air traffic control
- Nuclear power plants
- Naval aircraft carriers
Patient Safety

• Adverse outcomes may be common in healthcare
 – Patient did not respond to treatment as anticipated

 Adverse event - injury or harm resulting from care
 • 2 attempts at venipuncture

 Preventable adverse events plus error
 • Multiple unsuccessful venipuncture attempts

 Preventable adverse events
 • More than 2 attempts to establish 1 peripheral IV site
<table>
<thead>
<tr>
<th>Patient Safety – Trigger Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of catheter-related bloodstream infections</td>
</tr>
<tr>
<td>Stat or urgent PICC insertions</td>
</tr>
<tr>
<td>Excessive use of peripheral catheters indicating multiple unsuccessful attempts</td>
</tr>
<tr>
<td>Orders for vesicant antidotes or thrombolytic agents</td>
</tr>
<tr>
<td>Surgical procedures for debridement, fasciotomy related to compartment syndrome from infiltration</td>
</tr>
<tr>
<td>Surgical procedures for amputation related to intra-arterial injection</td>
</tr>
</tbody>
</table>
High Reliability Organizations (HRO)

• Reliability in health care
 – Patients receiving the intended tests, medications, information, and procedures at the appropriate time and in accordance with their values and preferences.25
Characteristics of HRO

- Preoccupation with failure
- Reluctance to simplify
- Sensitivity to operations
- Commitment to resilience
- Deference to expertise
Value-based System

Value = relationship between cost and quality

Minimizing cost of each intervention
- Limiting resources
- Restricting services
- Shifting Cost
- Creates false “savings”

Maximizing value over entire care cycle
- Restructuring delivery system
- Mandated outcomes measurement
Changing Reimbursement

• Hospital revenue
 – More than 90% from patient care services
 – Cafeteria, parking, investments, grants, donations

• Current payers for patient care services
 – Government - the single largest payer group
 • Medicare, Medicaid
 • Other direct government payments
 – Insurance companies
 – Employers
 – Individuals
Changing Reimbursement

Cost-Based Reimbursement
Before 1983

Prospective Payment Systems
• Began 1983; fixed fee based on DRGs

Pay for Performance
• Quality improvement
• Financial performance
• Patient outcomes
Changing Reimbursement

• **Value-Based Purchasing**
 – Hospital Acquired Conditions and Present on Admission Indicators
 – High cost, high volume, or both
 – Assigned to a higher paying DRG when present as a secondary diagnosis
 – Reasonably prevented through application of evidence-based guidelines

• 10 preventable conditions on original list for 2008
• 3 conditions are infusion related
 – Bloodstream infections - New ICD-9 code 999.31
 – Air emboli
 – Blood incompatibility

• http://www.cms.hhs.gov/HospitalAcqCond/
Teams and Teamwork

• Team- 2 or more persons
 – With specific roles
 – Perform interdependent tasks
 – Are adaptable
 – Share a common goal27

• Critical to patient safety
• Teams make fewer mistakes than individuals26,27,28
• Provides continuity
Become a Nurse Entrepreneur

• Nursing leaders who take responsibility for introducing innovative ideas within the organization or independently
 – Requires risk-taking, negotiation and business development skills
 – Written and oral communication skills to create the business case and business plan

• Health care is a business!
Business Case

• A position to justify the start-up of a project
 – What is/are the problem(s) being addressed?
 • Proficiency with PIV insertion, reducing the number of restarts, reducing the amount of supplies used
 • Reducing CRBSI, air emboli, infiltration/extravasation injuries
 • Improving patient satisfaction
 – What is being proposed?
 • 24/7/365 infusion therapy team
 • Limited hours of operation
 • Scope of services proposed
 – What are the costs and benefits of the project and alternative solutions?
 – Should an investment be made in this project or initiative?
Business Plan

- Detailed project plan
- Project proposal from the Business Case
- Define the services
- Market analysis
- Rough financial plan
- Detailed financial plan
- Detailed operations plan
Business Case and Plan

• Requires communication with C-Suite

CEO – chief executive officer

CFO – chief financial officer

CNO – chief nursing officer

COO – chief operations officer

• Nurses must learn the language of finances
• Communication with C-Suite
 – Must know how organization gets paid for services
 • Who pays
 – Government
 – Insurance companies
 – Self-pay
 – Charities
 • By what method
 – Traditional fee for service
 – Capitated fee
 » DRG
 » HMO
 – Pay for performance
 • Cost allocation
 • Budgeting processes
 • Value added by IV team
• Emphasis is now on cost containment, but do not forget revenue generation from some procedures
 – PICC insertion
Business Case and Plan

• What is the project
 – Continued justification for an existing infusion therapy team
 • Must stay one step ahead to be prepared for challenges
 – Initiation of a new infusion therapy team

• Environmental analysis
 – External factors
 – Internal factors

• Alternatives and related costs/benefits
Business Case and Plan

External factors

- Demographic changes
- Regulatory changes
- Supply of workers
- Technological changes
- What other nearby hospitals are doing

Internal factors

- Enhance compliance with facility’s mission, vision
- Alignment with management’s priorities
- Key decision-makers
- Facility’s financial status
- Compatibility with organizational goals
- Facility’s case mix
Business Case and Plan

• Begin with the current outcomes
• Emphasize demand for service with internal data
 – Documented complication rates
 • CRBSI, air emboli, infiltration/extravasation injuries
 • Lawsuits related to these outcomes
 – Patient satisfaction or complaints
 • Excessive venipunctures
 • Pain, discomfort
Business Case and Plan

• Begin with the current outcomes
• Emphasize demand for service with internal data
 – Venipuncture proficiency rates - # of attempts to start 1 IV site
 • # of catheters, skin antiseptics, others supplies
 • Excessive nursing time to perform multiple attempts
 – Frequency of restarts needed and why
 • Improper catheter/site selection
 • Lack of adequate catheter stabilization
 • Improper medication administration
 – Treatment of complications
 • Costs, additional length of stay
 – Medication errors
 • Root cause analysis
 – Lack of adequate staffing
 – Infusion pump issues
Business Case and Plan

• Sell the plan through cost-benefit analysis
 – Labor
 – Supplies
 – Improved quality of care
 – Reduced length of stay
 – Risk management
 – Market advantage
 – Convert these outcomes to $$$$$$
 • Reinforce the differences based on quality outcomes produced by infusion nurses
Business Case and Plan

• Teach CFO financial implications of
 – # of procedures performed
 – # of complications

• Must be converted to dollars saved or revenue generated

• Provide facts on how to minimize hospital’s risk
Business Case and Plan

• Be prepared to address all questions
 – Anticipate all questions from all sides of the proposed plan
 – “The right thing to do” is not sufficient
 – How can your proposal
 • Reduce costs
 • Reduce waste
 • Improve patient satisfaction
 • Improve patient flow through the system
 – Presented in comprehensive written form

• Quality does not increase cost!
Cost Examples- CR-BSI

- In a 2006 study, 54 patients with CR-BSI in medical and coronary intensive care units in US hospital

- Study period from 2002 to 2005

<table>
<thead>
<tr>
<th>Average payment</th>
<th>Average costs</th>
<th>Average loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>$64,894 (range, $4546 to $299,318)</td>
<td>$91,733 (range, $15,565 to $353,205)</td>
<td>$26,839 Total loss on 54 patients $1,449,306</td>
</tr>
</tbody>
</table>
Cost Examples - PIV Insertions

- $32 - Operational costs for insertion of peripheral catheter31
 - \(\sim \$40 \) Adjusted for inflation in 2010
 - 3\% increase per year for inflation

- A 2005 study reported32
 - 219 patients required 219 attempts
 - Operational costs = \$8760 for insertion
 - \(\sim \$40 \) per patient
 - 118 patients required 295 attempts
 - Operational costs = \$11,800 for insertion
 - \(\sim \$100 \) per patient

- Not a reimbursable expense
 - Contain costs by using the least amount of labor and supplies
Cost Examples - PIV as % of DRG

• 2.18 attempts for successful peripheral catheter insertion\(^{33}\)

• $87.20 for one successful peripheral catheter ($40 \times 2.18)

• DRG payment for respiratory infections and inflammation with complications = $4521 in 2008
 – Average length of stay = 7.6 days in 2008
 – 5 peripheral sites \(\times\) 2.18 = 10.9 attempts
 – 10.9 attempts \(\times\) $40 per attempt = $436 just to maintain venous access or 9.6% of DRG
Cost Examples - Prefilled Syringes

Median RN salary 2006 = $57,000 or $27.40 per hour

<table>
<thead>
<tr>
<th>Nurse-filled syringe</th>
<th>Prefilled syringe</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 2 min, 37 seconds for filling, labeling, flushing</td>
<td>= 1 min, 27 sec for flushing</td>
</tr>
<tr>
<td>Labor + supplies = $1.20</td>
<td>Labor + supplies = $0.92</td>
</tr>
</tbody>
</table>
Cost Examples - PIV Stabilization Device

<table>
<thead>
<tr>
<th>Item</th>
<th>Costs of PIV with tape</th>
<th>Cost of PIV with Stabilization device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter</td>
<td>$1.75</td>
<td>$1.75</td>
</tr>
<tr>
<td>Extension set, needleless connector</td>
<td>$1.90</td>
<td>$1.90</td>
</tr>
<tr>
<td>Start kit</td>
<td>$1.00</td>
<td>$1.00</td>
</tr>
<tr>
<td>Gloves</td>
<td>$0.05</td>
<td>$0.05</td>
</tr>
<tr>
<td>Prefilled saline flush syringe</td>
<td>$0.37</td>
<td>$0.37</td>
</tr>
<tr>
<td>Catheter stabilization device</td>
<td>$0</td>
<td>$3.25</td>
</tr>
<tr>
<td>Labor*</td>
<td>$6.85</td>
<td>$6.85</td>
</tr>
<tr>
<td>Overhead**</td>
<td>$5.96 to 11.92</td>
<td>$7.59 to 15.17</td>
</tr>
<tr>
<td>Total</td>
<td>$17.88 to 23.84</td>
<td>$22.76 to $30.34</td>
</tr>
<tr>
<td>100 patients</td>
<td>$1788 to 2384</td>
<td>$2276 to 3034</td>
</tr>
<tr>
<td>Restart rate, tape 70.7%</td>
<td>$3052 to 4069</td>
<td></td>
</tr>
<tr>
<td>Restart rate, Statlock 16.6%</td>
<td></td>
<td>$2654 to 3538</td>
</tr>
</tbody>
</table>
Cost Examples

• Infusion Team must operate under a budget with a revenue and expense cost center\(^1\)
 – Work closely with billing/reimbursement specialist

 – Annual review & updates to current procedures and charges

 – What gets charged is NOT what is reimbursed!!
<table>
<thead>
<tr>
<th>Procedure</th>
<th>UB-92</th>
<th>CPT 5</th>
<th>FY09 New Price</th>
<th>Medicare fee payment</th>
<th>Medicare APC payment</th>
<th>Peer mkt avg price</th>
<th>MSA mkt avg price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood draw</td>
<td>300</td>
<td>36415</td>
<td>$28.00</td>
<td></td>
<td></td>
<td>$22.27</td>
<td>$20.25</td>
</tr>
<tr>
<td>PICC insertion</td>
<td>361</td>
<td>36569</td>
<td>$1194</td>
<td>$666.42</td>
<td>$1768</td>
<td>$1525.3 0</td>
<td></td>
</tr>
<tr>
<td>single lumen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICC insertion</td>
<td>361</td>
<td>36569</td>
<td>$1283</td>
<td>$666.42</td>
<td>$1768</td>
<td>$1525.3 0</td>
<td></td>
</tr>
<tr>
<td>double lumen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declotting</td>
<td>361</td>
<td>36593</td>
<td>$532</td>
<td>$151.64</td>
<td>$1198</td>
<td>$623.79</td>
<td></td>
</tr>
<tr>
<td>catheter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future Direction

Restore what was
- Territorial IV teams fighting turf battles with other nurses
- Teams only doing peripheral venipunctures
- Teams doing ALL IV therapy

Reform what is
- Interdisciplinary teams
- Organized to meet patient needs 24/7/365
- Addressing all infusion needs, not just vascular access
The Future of Your Team

• What are your concerns?
• Your ideas?
• How would you handle a challenge from these consultants?
References: